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Abstract

We study a series of relations between physical parameters in coronal loops of the quiet Sun reconstructed by combin-
ing tomographic techniques and modeling of the coronal magnetic field. We use differential emission measure tomography
(DEMT) to determine the three-dimensional distribution of the electron density and temperature in the corona, and
we model the magnetic field with a potential-field source-surface (PFSS) extrapolation of a synoptic magnetogram. By
tracing the DEMT products along the extrapolated magnetic field lines, we obtain loop-averaged electron density and
temperature. Also, loop-integrated energy-related quantities are computed for each closed magnetic field line. We apply
the procedure to Carrington rotation 2082, during the activity minimum between Solar Cycles 23 and 24, using data
from the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory (STEREO) spacecraft. We
find a scaling law between the loop-average density N and loop length L, Nm ∼ L−0.35, but we do not find a significant
relation between loop-average temperature and loop length. We confirm though the previously found result that loop-
average temperatures at the equatorial latitudes are lower than at higher latitudes. We associate this behavior with the
presence at the equatorial latitudes of loops with decreasing temperatures along their length (“down” loops), which are
in general colder than loops with increasing temperatures (“up” loops). We also discuss the role of “down” loops in the
obtained scaling laws of heating flux versus loop length for different heliographic latitudes. We find that the obtained
scalings for quiet-Sun loops do not generally agree with those found in the case of AR loops from previous observational
and theoretical studies. We suggest that to better understand the relations found, it is necessary to forward model the
reconstructed loops using hydrodynamic codes working under the physical conditions of the quiet-Sun corona.

Keywords: Sun: Corona, Sun: UV radiation, Magnetic fields

1. Introduction

The study of the energy balance of the magnetically
closed corona provides clues on the mechanisms that main-
tain this region of the solar atmosphere two orders of mag-
nitude hotter than the photosphere. The magnetized and
rarefied coronal plasma imply that transport phenomena
are strongly inhibited in directions perpendicular to the
magnetic field lines. This is particularly evident in ac-
tive regions (ARs), in which the plasma is structured in
the form of loops and arcades as observed in extreme-
ultraviolet (EUV) and soft X-ray (SXR) images obtained
with space telescopes. Loops can be thought then, as in-
dividual one-dimensional (1D) atmospheres with more or
less independent evolutions.

Seminal studies (Rosner et al., 1978; Vesecky et al.,
1979) found that X-ray observations are consistent with
loops in equilibrium, assuming energy balance between
heating and thermal and radiative losses. Several scaling
laws deduced from these studies were used to determine
whether loops are in equilibrium or not. For instance,
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Vesecky et al. (1979) found that in quasi-static equilibrium
the three terms of the balance equation should be approx-
imately equal. It can be easily demonstrated (see, e. g.,
López Fuentes et al., 2007) that this condition implies a
scaling law between density and temperature, N ≈ T 2.
However, these results are based on X-ray loops with tem-
peratures well above 2 MK (usually called ”hot loops”, see,
e. g., Reale, 2014). Later analysis based on EUV data,
showed that warm loops (with temperatures around 1.2
MK) are too dense to be in static or quasi-static equilib-
rium (Aschwanden et al., 2001; Winebarger et al., 2003).
All the mentioned results correspond to observations of
AR loops.

Regarding the energy input needed to maintain ob-
served coronal conditions, the review by Withbroe and
Noyes (1977) provided estimations based on phenomeno-
logical models of the order of 107 erg cm−2 s−1 for ARs
and 3×105 erg cm−2 s−1 for the quiet Sun (also see, Hahn
and Savin (2014); Mac Cormack et al. (2017)). These es-
timations are still used as canonical values.

One way to test different coronal heating models has
been to study the presence of scaling laws between ob-
served physical parameters of ARs coronal loops, such as
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temperature, density, length and magnetic strength, and
compare them with the predictions of the models (see, e.g.,
Fisher et al., 1998; Mandrini et al., 2000; Jain and Man-
drini, 2006; Pevtsov et al., 2003).

Since magnetic loops are the basic observable blocks
of the coronal structure and they are most conspicuously
observed in ARs, most efforts to understand the energy
input and coronal dynamics have been focused on studying
AR coronal loops (see, e.g., the reviews by Reale, 2014;
Klimchuk, 2015). Due to a lower intensity and apparent
uniformity in EUV and SXR observations, the situation
is quite different in the quiet-Sun corona, where a direct
identification of loops is normally not possible. For this
reason, quiet-Sun studies have been much scarce. In the
case of quiet-Sun loops, it is necessary to reconstruct the
location of magnetic field lines and the plasma parameters
along them by other means (see, e.g., Hahn and Savin,
2014).

In this work, we use differential emission measure to-
mography (DEMT) along a full solar rotation, to recon-
struct the 3D distribution of the temperature and elec-
tron density in the coronal volume between 1.02 and 1.225
R� (Vásquez, 2016). Since we use one EUV image ev-
ery six hours to obtain a global description of the corona,
the tomographic technique does not resolve the shorter
timescales of the coronal dynamics. Furthermore, given
the height limits imposed on the tomography, low-lying
structures such as coronal bright points are left out of the
analysis. Thus, in this paper, we only study the large
scale Quiet Sun corona. The DEMT results are combined
with a potential magnetic field model (PFSS) that extrap-
olates the global solar magnetic field from observed synop-
tic magnetograms. In this way, we obtain the loop-average
temperature and density of the plasma in each closed field
line integrated from the magnetic model. Also, we find a
loop-integrated equation derived from the energy balance
between a heating term, radiative cooling and conductive
flux (Mac Cormack et al., 2017). This allows derivation of
the energy input flux required at the coronal base to main-
tain thermodynamically stable coronal structures. With
the objective of finding statistical relations and identify-
ing possible scaling laws between observed and inferred
coronal parameters, we apply this procedure to the partic-
ular case of Carrington rotation 2082, that occurred at the
minimum between Solar Cycles 23 and 24 with no relevant
ARs on the Sun during that rotation.

In Section 2 we present a description of the tomo-
graphic technique, the potential model and the energy
balance model used to describe energy fluxes along recon-
structed loops, as well as the data used and the methodol-
ogy followed. In Section 3 and its subsections we present
and analyze our results in terms of the studied loop pa-
rameters and we discuss and conclude in Section 4.

2. Method and Data

2.1. Tomographic Technique and PFSS Model

The differential emission measure tomography (DEMT)
is a technique developed by Frazin et al. (2009) and used in
several works focused on the study of coronal plasma prop-
erties during minima of solar activity cycles (Nuevo et al.,
2015; Lloveras et al., 2017; and the review by Vásquez,
2016). The technique divides the corona in a spherical
grid that covers all latitudes and longitudes between 1.025
R� and 1.225 R�. Using a series of EUV images from dif-
ferent filter bands of the instrument used, covering a full
solar rotation, it obtains a 3D distribution of the emissiv-
ity in the coronal volume of interest. The tomographic
emissivities in each computational cell are then used to
determine its local differential emission measure (LDEM),
which describes the temperature distribution of the elec-
tron plasma within the specific voxel. The method relies
on a parametric-modeling technique, finding the LDEM
that best predicts the tomographic data.

Previous works (Nuevo et al., 2015) showed that LDEMs
can be modeled using Gaussian functions determined by
three parameters: area, mean temperature, and standard
deviation of the Gaussian curve. The three parameters can
be interpreted as follows. The area of the Gaussian relates
to the electron density of the plasma in the voxel, the mean
value corresponds to the mean temperature, and the stan-
dard deviation is an indication of how multi-thermal the
plasma in the voxel is; the larger the width the more di-
verse the temperatures within the voxel. By computing
the moments of the LDEM, we obtained the mean elec-
tron density and temperature in each voxel. Then, a 3D
distribution of the mean electron and temperature of the
global corona is constructed.

To obtain the coronal magnetic field we use a potential-
field source-surface (PSFF, see Schrijver and De Rosa,
2003) model that extrapolates the magnetic field from
photospheric synoptic magnetograms obtained with the
Michaelson Doppler Imager (MDI) on board SOHO, used
as boundary condition. To perform the reconstruction we
select the starting points at the center of each tomographic
voxel, at uniformly spaced heights, every 0.02 R�, within
1.025 and 1.225 R� and every 2° in latitude and longitude.
Thus, we obtain a magnetic field reconstruction that covers
the whole volume that contains DEMT results. The source
surface is set at 2.5 R�, a height of ≈ 1045 Mm above
the photosphere. Magnetic field lines are integrated using
the PFSS Solarsoft package (Schrijver and De Rosa, 2003)
and associated to individual loops. In order to combine
the magnetic field reconstruction with the 3D distribution
of the plasma parameters, we use the DEMT results in the
voxels crossed by each loop within the tomographic limits
(1.025 to 1.225 R�). Since the resolution of the field line is
higher than the tomographic resolution, given a magnetic
field line, we only keep one data point of the loop on each
tomographic voxel that it crosses. We choose the middle
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point of the loop segment crossing the voxel. Then, we as-
sociate to that point the DEMT products (electron density
and mean temperature) of the corresponding voxel. Thus,
each magnetic loop is formed by as many data points as
tomographic voxels it crosses.

In this work, we only analyze closed magnetic loops
within the tomographic limits. As in previous works (Mac
Cormack et al., 2017; Lloveras et al., 2017), these loops
are separated in two legs, from the coronal base to the
apex of the loop. Since we have the plasma parameters
traced along each leg, we can apply one fit for each one,
to ensure a good characterization of the thermal proper-
ties along the loops. In the case of the density, we observe
a strong variation with height which is consistent in gen-
eral with an exponential behaviour associated to a certain
height-scale. We therefore use an exponential least-square
fit whose quality is characterized by its coefficient of de-
termination r21. It is worth noting that we use an expo-
nential fitting only for practical reasons, and that we are
not assuming, in principle, that the reconstructed loops
are necessarily in equilibrium. For the temperature, the
variation with height is much smoother, so we use a linear
fit. In this case, we use the Theil-Sen estimator, which is
more robust than the regular least-square fit, for its treat-
ment of the relative weight of outliers data. To determine
the success of the temperature fit, we consider which per-
centage of data along the loop falls within the uncertainty
interval of the temperature calculation of the tomography
(≈ 5 − 10%, see Lloveras et al. 2017). In this way, we
obtain the variation of electron density and temperature
along each loop, as well as the height scales and gradients
needed to compute the energy flux, along the loops. In the
next section we present the energy balance model used to
compute this energy flux.

2.2. Energy balance model

In order to obtain a rough estimation of the heating
injected into the loops, we assume an energy balance situ-
ation in which all gains are compensated by losses. In this
way, for a coronal magnetic flux tube, the coronal heating
power (Eh) is locally balanced by the radiative (Er) and
the thermal conduction (Ec) losses (Aschwanden, 2004).
Thus, if s is the position along the flux tube, we have:

Eh(s) = Er(s) + Ec(s), (1)

where the quantities are in units of [erg sec−1 cm−3]. To
compute the thermal conduction power, in this particular
plasma regime we use the Spitzer model (Spitzer, 1962),
in which the thermal conduction is associated to the di-
vergence of the conductive loss function:

Fc(s) = −κ0 T (s)
5/2 dT

ds
(s). (2)

1r2 ≡ 1−Sres/Stot, where Sres is the sum of the squared residuals
and Stot is the sum of data deviations from the mean.

where κ0 is the Spitzer thermal conductivity κ0 = 9.2 ×
10−7erg sec−1 K−7/2.

Since thermal conduction is strongly confined to the
magnetic field direction, the divergence is simply the deriva-
tive along the position s,

Ec(s) =
1

A(s)

d

ds
[A(s)Fc(s)] . (3)

where A(s) represent the loop area along the position s.
Assuming a quasi-isothermal plasma approximation in

the quiet-Sun corona, the radiative power can be expressed
as plasma density to the second power multiplied by a ra-
diative loss function, Λ(T ), that accounts for the tempera-
ture dependence of the radiated emission. To calculate the
radiative loss function we use the atomic database and the
plasma emission model from CHIANTI (Del Zanna et al.,
2015). We obtain the electron density from the DEMT
results. We then compute the radiative power along the
flux tube as:

Er =

∫
Λ(T ) dN2

e (T ). (4)

Integrating each of the three power quantities, Eh, Er, Ec,
over the volume of the magnetic flux tube, and dividing
the result by its basal area, a loop-integrated version of
the energy balance is obtained,

φh = φr + φc. (5)

where the three resulting loop-integrated quantities φ have
units of energy flux [erg sec−1 cm−2], and the equation
holds now for each individual field line (as opposed to flux
tube).

Due to the null divergence condition of the magnetic
field, it can be integrated along the magnetic flux tube
to obtain the following relation with the flux tube area:
A(s)B(s) = A0B0 = ALBL, where B0 and BL are the
values of the magnetic field at the footpoints of the loop in
the coronal base. Therefore, the radiative and conductive
terms can be rewritten as

φr =

(
B0BL

B0 +BL

) ∫ L

0

ds
Er(s)

B(s)
, (6)

φc =
B0 Fc,L −BL Fc,0

B0 +BL
. (7)

For a fully detailed description of the energy balance
model, we refer the reader to Mac Cormack et al. (2017).

2.3. Data

In this work we use EUV images from the Extreme Ul-
traviolet Imager (EUVI, Wuelser et al. (2004)) on board
the Solar Terrestrial Relations Observatory (STEREO)
mission (Kaiser et al., 2008). We reconstruct the solar
corona along Carrington rotation (CR) 2082 using three
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different wavelength bands of the telescope: 171 Å, 193 Å,
and 284 Å, which have a maximum temperature sensitiv-
ity in the range 1.0 − 2.15 MK (see Nuevo et al. (2015)).
This rotation started on 5 April 2009 and finished on 3
May 2009 during the minimum between Solar Cycles 23
and 24.

DEMT provides an average description of the coronal
state during the data-acquisition time (half a synodic so-
lar rotation period), and cannot temporally resolve coro-
nal dynamics. If ARs are observed during the analyzed
rotation, the DEMT results may produce artifacts such
as negative density values on the voxels covering active
events. We call these voxels zero-density artifacts (ZDAs)
and they are discarded from the analysis. No significant
active regions (ARs) were observed during Carrington ro-
tation 2082.

2.4. Method

In this work we focus on closed magnetic loops whose
apexes are within the limits of the tomographic box (≈ 14
Mm to ≈ 150 Mm). Each reconstructed loop must sat-
isfy certain criteria to be considered viable for analysis.
These criteria were already used in previous works (Mac
Cormack et al., 2017; Lloveras et al., 2017). First, sepa-
rating the loops in two legs, each leg must count with at
least five viable voxels (without ZDAs) to ensure a good
determination of the parameters, otherwise the loop is dis-
carded. Secondly, the coefficient of determination for the
density fit, r2, must exceed 0.75 on each leg. For the tem-
perature, it is required that at least 50% of the data along
each leg be contained within the uncertainty interval of
the tomographic temperature computation. We consider
that following these criteria a reliable set of closed coro-
nal loops is obtained. We start with ≈ 55000 loops and,
after applying these criteria, we keep ≈ 30000 loops with
reliable data.

In previous works, it was found a dependence of the
temperature on the latitude where the loop was located
(Nuevo et al., 2015; Lloveras et al., 2017). They observed
that structures at latitudes close to the equator (−20, 20°)
had cooler temperatures than loops at middle latitudes
(|20, 60|°). Considering this, we divide our loop population
into three regions: south latitudes (−20,−60)°, equator
latitudes (−20, 20)°and north latitudes (20, 60)°. Here, we
consider that a loop corresponds to a certain latitude range
if its two footpoints lie on that range. Because of this
selection criteria, the loops in our set tend to be of medium
and short length (less than 800 Mm) and are located within
the coronal streamer. Loops that cross the equator and
surround the streamer are not included, and neither are
loops open to the interplanetary medium (which we call
“open loops”).

Once we have reconstructed and selected the loops in
each region, we compute loop-average properties for each
of them. Each loop is characterized by its length, loop-
average density, temperature, and pressure along their length

(starting from ≈ 14 Mm above the photosphere), loop-
average magnetic field (starting from the photosphere) and
loop-integrated energy flux quantities obtained with the
energy balance model (see Section 2.2) at ≈ 14 Mm of
height. We average the magnetic field starting from the
photosphere instead of a height of ≈ 14 Mm, in order to
obtain a more substantial variation of the mean magnetic
field for different loops in the set, since the field varies
much less along coronal heights.

Since we have large samples of loops (of the order of
5000 on each region), to simplify the analysis we proceed to
separate them in small length bins, obtaining loop-average
values of the parameters of interest within each bin. In
each region, there is a distribution of loop lengths rang-
ing from ≈ 100 Mm to ≈ 800 Mm. We divide the loop
length range in 35 non-uniform bins, set so that each one
contains the same number of loops to have the same statis-
tical noise. We have verified that our results do not change
significantly if we vary the number of bins. On each bin we
compute the median of the parameters of interest and an
estimated error. The error is obtained from the median of
the differences between individual loop-averages and the
median of the bin. We consider that following this pro-
cedure we obtain more robust fits for the analysis of the
relations between loop parameters. We present our results
in the next section.

3. Results

3.1. Loop length distribution

Fig. 1 shows the distribution of loop lengths L on
each latitude region. The gray line represents the total
population of analyzed loops. As already mentioned, the
loops in the selected set are relatively short and are located
within the streamer. The median length is ≈ 300 Mm at
all latitudes. However, it can be noticed that there is a
substantial population of shorter loops around a length of
≈ 150 Mm in the equatorial region.

In previous works (Huang et al., 2012; Nuevo et al.,
2013), two classes of loops have been identified accord-
ing to the temperature variation along the coronal part
of their length. Magnetic structures whose temperature
increase or decrease with height were classified as up or
down loops, respectively. In an up loop, the temperature
is higher at the apex than at the coronal base, and the
opposite in a down loop. In those articles, the authors
found that down loops are mainly located at the equa-
torial region. Serio et al. (1981) were the first to analyze
these structures, finding a temperature inversion along the
coronal part of the loops. They also found that for down
loops to be thermodynamically stable their length should
be less than 3 times their density scale height. This conclu-
sion is consistent with our results, since down loops tend
to be shorter while up loops have more evenly distributed
lengths.
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Figure 1: Frequency histograms of loop length, L, for the different latitude regions: south (−20,−60)°(left panel), equator (−20, 20)° (middle
panel) and north (20, 60)° (right panel). The gray line indicates the total number of loops with both footpoints in the indicated latitude.
Green, blue, and red histograms correspond to isothermal, up, and down loops respectively. In all cases, the median value, m, and the
standard deviation, σ, are indicated.

In this work, we classify up and down loops according
to the following criteria. We consider that a loop is up
if its temperature gradient is positive in both legs and
the temperature variation between the foot and the apex
is greater than the median of the standard deviation of
the temperature distributions (the LDEMs) in the voxels
that are crossed by the leg. If both legs meet the criteria,
the loop is called up. In this way, it is ensured that the
temperature variation is substantial, because it must be
larger than the characteristic standard deviation of the
plasma thermal distribution. This variation is also much
larger than the typical error of the tomographic method
(Lloveras et al., 2017). Similarly, for a loop to be called
down, the temperature gradient must be negative in both
legs of the loop and the absolute value of the variation
between the foot and the apex must be greater than the
median of the width of temperature distributions. Finally,
a loop is called isothermal if the temperature variation
between the foot and the apex is less than the median of
the thermal widths. These criteria must also be met in
both legs of the loop. In all cases in which one leg meets
one of the criteria, and the other one another, the loop is
not labeled with any of these definitions.

It is worth to clarify that these loops are not prop-
erly isothermal, since the existence of a width in the ther-
mal distribution of the voxels, and therefore the loops that
cross them, are indicative of a multi-thermal plasma. How-
ever, it can be assured that their temperatures do not vary
beyond the range determined by the median of the thermal
widths. In the same sense, according to our criteria, up

and down loops are considered such, if their temperature
variations along the loop length is larger than the range de-
termined by the loop-average thermal width, i.e., the tem-
perature variation is beyond the normal multi-thermality
of the plasma. To class loops as isothermal, up or down,
previous works (Lloveras et al., 2017), considered varia-
tions larger or smaller than the range defined by the error
interval of the tomographic procedure. The criteria ap-
plied here are more strict in terms of relevant variations of
temperature along the loops.

In Fig. 1 we show histogram distributions of isother-
mal loops (green histogram), up loops (blue histogram)
and down loops (red histogram), separated by heliographic
latitude region. We observe that in each latitude there is
a large population of isothermal loops that follow the be-
haviour of the full set. We note that the largest population
of down loops is found around equatorial latitudes. These
loops have dominantly short lengths between ≈ 100 Mm
and ≈ 400 Mm, as expected. up loops, on the other hand,
dominate the south and north latitudes, with lengths be-
tween ≈ 200 Mm and ≈ 700 Mm.

In order to analyze the behavior of the loop-average
parameters as a function of length, for each latitude we
separate the loop lengths in 35 bins, as described in Sec-
tion 2.4. In the following sections we present the results
for the different loop parameters.
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Figure 2: Scatter plots of loop-average density (Nm) vs. length (L) in each latitude: north (upper panel), equator (middle panel) and south
(bottom panel). Small pink dots represent the loop-average density starting from a height of ≈ 14 Mm. The bold-dark bullets represent
the median of the loop-average density within loop length bins as described in Section 3.2. Error bars represent the median of the distances
between individual loop-averages and the median value of each bin. The continuous line is a linear fit of the median values of the bins. The
fit results are accompanied by their corresponding coefficient of determination r2 and the median error in the panel insets.

3.2. Density and pressure

Fig. 2 shows logarithmic plots of density versus length.
Each pink point in the data cloud corresponds to the loop-
average density Nm of each analyzed loop and the bold-
dark bullets correspond to the median of the loop-average
densities per bin as a function of loop length median per
bin. The accompanying error bars correspond to the stan-
dard deviation of the density distribution within each bin.
A decreasing behavior is observed as expected, since the
plasma is denser near the coronal base, so longer loops
tend to have lower loop-average densities than short ones.
We also note that, for the three latitude regions, the slopes
found are very similar, ≈ −0.35, implying a scale law of
the type Nm ≈ L−0.35. In all cases the coefficient of de-
termination, r2, is equal or higher than 0.85.

Due to the validity of the ideal gas approximation in
the quasi-isothermal corona, the behavior of the loop-average
pressure is very similar to that of the density. We obtain
in this case similar slopes, ≈ −0.3 in the three latitudes,
all of them with a coefficient of determination, r2, higher
than 0.85.

3.3. Temperature and magnetic field

Studying the temperature as a function of length, we
do not find the same clear dependence as for density and
pressure. However, analyzing each latitude region sepa-
rately, we find that the loop-average temperature Tm in
equatorial latitudes is lower than in the north and south
latitudes. This is consistent with previous solar minima
studies showing that down loops are mainly located at low
latitudes (Nuevo et al., 2013; Lloveras et al., 2017). Fig.
3 shows the loop-average temperature of each loop as a
function of loop length. The accompanying error bars are
the loop-average width of the temperature distributions
obtained from the LDEM widths. The red solid line is the
median of all loop-average temperatures in the latitude
region, and the width of the blue shaded area around the

temperature median corresponds to the median of all the
loop-average thermal widths WTm. In the upper left cor-
ner of the panels, we indicate the percentage of loops whose
loop-average temperatures lie within the blue shaded area.
Therefore, we associate the blue area with the typical tem-
perature and thermal width of the loops in each latitude
region. It can be seen that the loop-average temperature
in equatorial latitudes is ∼ 15% lower than in middle-
latitudes, as it has been observed in previous works (Mac
Cormack et al., 2017).

In Fig. 4 we show the loop-average magnetic field
Bm as a function of loop length. The solid lines repre-
sent the median of the magnetic field in the correspond-
ing latitude region, and the blue shaded area corresponds
to the median of the differences between each individual
loop value and the magnetic field median. It can be seen
that the loop-average magnetic field has a similar behav-
ior to the temperature. We find median values that are
≈ 20% smaller in equatorial latitudes that in south and
north latitudes. Also, a decreasing behavior is observed
as a function of length, which indicate that the longer the
loop, the smaller the loop-average magnetic field. Look-
ing for a scaling law of the type Bm ∼ L−r, we obtained
r values in the range ≈ [0.15, 0.55] in the three latitude
ranges. However, the fit quality parameters vary between
0.45 and 0.8 in the three latitude regions.

Although we did not find a clear relation between tem-
perature and magnetic field of the loops, the similar de-
pendence on latitude found in both cases motivated us to
perform the following analysis. We divide both datasets in
bins of 4°of latitude and we compute the median of Tm and
Bm in each bin. Since both loop legs do not necessarily
lie in the same bin, we do this analysis by leg and not by
loop, so we include on each latitude bin all the loop legs
whose footpoint lies in that latitude. In Fig. 5 we show a
logarithmic plot of the median temperature as a function
of the median magnetic field for each latitude bin. A linear
fit provides a slope of ≈ 0.2, suggesting a scale-law of the
type Tm ≈ B0.2

m .
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Figure 3: Scatter plots of loop-average temperature Tm vs. length L for three latitudes: south (left panel), equator (middle panel) and
north (right panel). Small dots represent the loop-average temperature in each latitude from 14 Mm of height and error bars indicate the
loop-average temperature distribution width WTm. Continuous red lines are the median of the loop-average temperatures of all loops and
the blue shaded area represent the median of the temperature distribution width of all loops. We show the percentage of loops that are in
the blue area, and that are considered “average loops”.

3.4. Temperature distribution width

The left panels of Fig. 6 show the loop-average tem-
perature distribution width WTm as a function of loop
length L, in each latitude range. We find a similar behav-
ior of the temperature distribution width as a function of
length in each region, with slopes of ≈ −0.20. But when
we perform the study of the populations separated by the
loop types as described in Section 3.1, we find that the
loop-average temperature distribution width for up loops
is smaller than for down loops in all latitude regions, as it
can be seen in the right panels of Fig. 6. Given the condi-
tion that the temperature variation along the loops must
be larger than the loop-average temperature distribution
width to be considered non-isothermal, this makes that
up loops to tend to present smaller temperature variation
along their lengths, so their temperature gradients tend to
be smaller than those of the down loops. This will be more
evident in Section 3.5 where we analyze the effect of the
thermal conduction on the energy balance of the loops. In
Fig. 6 we can also see similar distributions of temperature
width for the total sets of loops (gray line), with a median
value of ≈ 0.27MK in all latitude regions.

3.5. Energy fluxes

Fig. 7 shows the statistical distribution of the loop-
integrated conductive flux, Φc, for each latitude region.
We observe that for loops in equatorial latitudes, the loop-
integrated conductive flux is predominantly negative, while
in the other latitudes we see a more symmetrical distribu-
tion around zero. This is due to the larger presence of
down loops (the red area of the histogram) at the equator
(see Mac Cormack et al., 2017). Due to the strong de-
pendence of the conductive flux on the temperature gra-
dient along the loops (Eq. 3), we infer that down loops

have larger gradients than up loops, producing a distribu-
tion of conductive flux displaced towards the negative side,
then an input of heat from the loop footpoints. We asso-
ciate this with the temperature distribution width stud-
ied in Section 3.4, where we have seen that down loops
have larger temperature widths than up loops. Since we
used the temperature widths as the threshold to classify
up and down loops, the temperature differences between
the loop base and the apex tends to be larger for down
loops than for up loops. Thus, the gradient is also larger
(and negative) producing a negative tail on the conductive
flux distribution.

We can also see, in Fig. 7, the percentage of up and
down loops with respect to the total number of loops. We
see that in the equator 5% of the loops are down loops,
while there is no significant population of up loops (2%)
and that the isothermal loops are 57% of the total popula-
tion. In souther latitudes the up loop population is greater
than the down loop (28% and ≈ 0% respectively), and the
same behavior is observed in the north (12% of loops are
up while there is no significant population of down loops).
Notice that with the chosen criteria to classify loops and
the wide temperature distributions provided by the tomog-
raphy, up and down loops are a small fraction of the total
population.

Also, we analyze the behaviour of the conductive flux
as a function of length. For north and south latitudes,
the conductive flux shows no correlation with length. For
equatorial latitudes we find slopes around ≈ −0.9 with a
coefficient of determination of r2 ≈ 0.8. This indicates
that negative conductive flux is significantly present in
short loops and contributes as an energy input flux at
equatorial latitudes.

In Fig. 8 we plot the loop-integrated radiative flux as a
function of length. We obtain similar slopes for the three
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Figure 4: Scatter plots of loop-average magnetic strength Bm vs. length L for three latitudes: south (left panel), equator (middle panel) and
North (right panel). Small dots represent loop-average magnetic field starting from the photosphere. Continuous red lines correspond to the
median of the loop-average magnetic field of all loops and the blue shaded areas represent the median of the differences between the median
value of magnetic field of all loops and the global median. We show the percentage of loops that are in the blue shaded area, implying that
they should be considered “average loops”.

latitudes (≈ 0.65). This is expected, since loop-average
density has a similar behaviour in the three latitudes and
the radiative power is strongly dominated by density (see
Eq. 4 and 6). As a first approximation, we assume a direct
relation between square density and length. Since the de-
pendence of the density on loop length is Nm ≈ L−0.35, as
we mentioned before, we would expect to obtain the square
of the observed slope. We did not find the expected value
because, as we can see in Eq. 6, the magnetic field is also
an important variable involved in this relation. In section
4 we discuss this in more detail.

From the balance equation (Eq. 5), all losses should
compensate for the gains. But there are some loops for
which the loop-integrated conductive flux is so extremely
negative (i. e. those down loops with large gradients that
we mentioned before) that the loop-integrated radiative
flux is not enough to compensate for such input of en-
ergy at the footpoints. In these loops the loop-integrated
energy input flux becomes negative, which of course does
not make physical sense. This could be due in part to an
underestimation of the radiative flux, considering that we
reconstruct the coronal emission using three filter bands,
each one with a response at a particular temperature range.
It could be possible that part of the plasma is emitting at
a temperature outside the detected range, so it is not pos-
sible to reconstruct the whole emission profile. Another
possibility is that these loops are in evolution, and what
we are seeing is an average of that evolution, since the to-
mographic technique does not resolve the short timescale
dynamics. We find though that these loops represent only
the ∼ 2.3% of the total population, so we decided to ex-
clude them from the following analysis.

Fig. 9 shows the analysis for the loop-integrated en-
ergy input flux considering only the positive population.
We find similar slopes for the south and north latitudes,

and a slope, within the logarithm plots, ≈ 30% larger in
the equatorial latitude. This difference is mainly due of
the dominant presence of down loops in the equatorial lat-
itudes. It can be seen that the difference of slope is due to
the shorter loops of the equatorial set, which, being dom-
inated by down loops (see Fig. 1, central panel) tend to
have a larger negative conductive flux (as shown in the
analysis of Figure 7), therefore decreasing the energy flux
input and producing a larger slope for the whole set. Both
slopes, loop-integrated radiative flux and energy flux in-
put as a function of length, can be compared in Fig. 9.
It denotes the weak contribution of the conductive flux in
southern and northern latitudes and the remarkable pres-
ence in the equator.

4. Conclusions

The main aim of this work was to find relations between
different plasma parameters along reconstructed quiet-Sun
coronal loops. To do that, we used a tomographic tech-
nique that provides the 3D distribution of the temperature
and electron density in the global corona, obtained from
EUV observations in three EUV bands of the STEREO/EUVI
telescope integrated along one solar rotation. To recon-
struct coronal loops we integrate magnetic field lines from
a Potential Source Surface Field (PSSF) model obtained
extrapolating the magnetic field from synoptic magnetograms.
Combining the DEMT results with the geometrical loca-
tion of field lines from the magnetic model we obtain loop-
averages of temperature and density for each reconstructed
loop. We applied the procedure to Carrington rotation
2082.

Our initial approach was to analyze the relation of the
thermal properties of the loops with a geometric parameter
such as the loop length. Motivated by previous results
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Figure 5: Red dots correspond to the plot of the Tm vs. Bm for the legs of each reconstructed loop. Bold-dark bullets represent the median
(Bm, Tm) value within bins of 4°of latitude. Error bars correspond to the median of the differences between the each individual value and
the median value of each latitude interval. The continuous line is the linear fit obtained with the median values of each interval. In the upper
inset we show the fit results with its corresponding coefficient of determination r2 and the median error for the temperature and the magnetic
field.

(Nuevo et al., 2013; Lloveras et al., 2017), we separated the
loops in three heliographic latitude regions, north (20 to 40
°), equator (-20 to 20 °) and south (-40 to -20 °). Similar
length distributions were observed in the three latitude
ranges, with a small population of shorter loops (≈150
Mm) at the equator. We also separated loops according to
the temperature behaviour along them. Loops for which
temperature increases along their length are classified as
up, while if the temperature decreases they are classified
as down. It was found that down loops are mostly present
in equatorial latitudes and, in general, are shorter than up
loops, as it has been already observed in previous works
(Nuevo et al., 2013; Lloveras et al., 2017; Mac Cormack
et al., 2017).

For the analysis of the density, we found that, inde-
pendently of latitude, the loop-average density has a di-
rect relation with length: Nm ≈ L−0.35. Since radiative
flux is directly related to density, as we described in Sec-
tion 2.2, but also has a strong dependence with the mag-
netic field (Mac Cormack et al., 2017), an approximate
Φr ≈ N2

m LB−1 relation should be expected. Considering
the above relation between Nm and L and the decreasing
relation between the magnetic field and the loop length
(Bm ≈ L−r), we would expect then, Φr ≈ L0.3+r. In this
way, the coefficient related to the magnetic field r should
be ≈ 0.3 which is in the range of coefficients found be-
fore. A deeper study of this and other relations with the
loop-average magnetic field will be done in the future.

No behavior directly linked to the loop length was ob-
served in the loop-average temperature, indicating that

within the analyzed coronal heights the temperature is
mostly uniform. It is worth reminding though that all ex-
pected variations must be in the temperature range within
which the instrument has its response. Temperatures out-
side this range would not be detected. Even so, we ob-
served a dependence of the loop-average temperature on
the latitude of the loops. We found that equatorial loops
have an average temperature ≈ 15% colder than those in
middle latitudes. This could be due to the widespread
presence of down loops in the equatorial latitudes, since
they tend to be colder than up loops. It is also observed
that up loops tend to be less multi-thermal than down
loops, which is consistent with the observed relationWTm ≈
L−0.2, since down loops are shorter in general than up
loops. This has a direct consequence on the temperature
gradients used to compute the loop-integrated conductive
flux. Down loops have negative gradients that tend to be
larger in absolute value than the gradients of up loops,
producing larger negative conductive fluxes as we discuss
below.

The loop-average magnetic field presents a similar be-
havior to temperature in relation to latitude. Loops at the
equator have a loop-average magnetic field that is ≈ 20%
lower than at mid-latitudes. This motivated us to perform
a study of the temperature as a function of the magnetic
field separating them in latitude bins. In this case, we
obtain an approximate relation: Tm ≈ B0.2

m .
Finally, we analyzed the relation between the loop-

integrated energy input flux and the loop length. Since
the temperature gradients are very small in the major-

9

songyongliang




ity of the loops (up and down loops with larger gradients
are the minority), the loop-integrated conductive flux is
in most cases almost negligible in comparison with the
loop-integrated radiative flux. Then, the calculation of the
loop-integrated energy input flux is mostly determined by
the radiative flux. The case in which the conductive flux
has more influence is in the equatorial latitude, where the
presence of down loops is more important. In some ex-
treme cases of down loops, the temperature gradient is so
negative that the radiative flux is not enough to compen-
sate for the negative conductive flux, producing unphysi-
cal negative values of the energy input flux, since an extra
cooling term would be needed for a thermal equilibrium.
Those loops (representing ≈ 2.3% of the total) were elim-
inated from the analysis. Since down loops are mostly
in the short length tail of the distribution, the slope of
the loop-integrated energy input flux as a function of loop
length is ≈ 30% larger in the equatorial latitudes, as we
discussed in Section 3.5.

As we mentioned in Section 1 a series of scaling laws be-
tween loop parameters have been found in studies based on
ARs loops. None of the relations found here is fully consis-
tent with those results. This is somehow expected though,
because AR loops are shorter (≈ 50 Mm, six times smaller
than the average of our loops), much denser and hotter,
and with magnetic fields in excess of ≈ 100 G (one or two
orders of magnitude larger than the average value found in
our loops). While a common approximation in ARs con-
siders loops below the plasma scale-height (≈ 100 Mm),
most of our loops have lengths that far exceed that value.
Much of the scaling relations predicted by canonical theo-
retical estimations (see, e.g. Rosner et al., 1978) are based
on those physical conditions and approximations. One im-
portant finding by Vesecky et al. (1979), was that conduc-
tive and radiative losses are of the same order of magni-
tude, while in our study, conductive flux is not significant
for the largest part of the loop population. This may be
related to the inconsistency of our results with the scaling
laws expected in the case of static equilibrium solutions.
Therefore, the question arises if our results correspond to
loops in equilibrium or they correspond to the averaging
of loops which are actually evolving in time. Some of these
considerations have been already discussed by us in Mac
Cormack et al. (2017), where we compared loop parame-
ters obtained with the tomographic procedure with the re-
sults of a 0D hydrodynamic model (Klimchuk et al., 2008)
that provides mean coronal temperature and density and
that included usual assumptions for AR plasmas. We will
complement our present results with one-dimensional hy-
drodynamic models that reproduce the temperature and
density profiles of the observed reconstructed loops under
physical conditions present in the quiet-Sun corona.
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Figure 6: Left panels: Same as Figure 2 for the loop-average temperature distribution width WTm. Right panels: Same as Figure 1 for the
temperature distribution width WTm.
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Figure 7: Same as Figure 1 for the loop-integrated conductive flux (Φc). We show the percentage of each loop population with respect to the
total population.

Figure 8: Same as Figure 2 for the loop-integrated radiative flux

Φr.

Figure 9: Same as Figure 2 for the loop-integrated energy input flux Φh. Dashed-purple line represent the linear fit of the median values of
loop-integrated radiative flux in the bins. Both fit results are accompanied by their corresponding coefficient of determination r2.
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